The Mars Climate Orbiter (formerly the Mars Surveyor ’98 Orbiter) was a 638-kilogram (1,407 lb)[1] robotic space probe launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and surface changes and to act as the communications relay in the Mars Surveyor ’98 program for Mars Polar Lander. However, on September 23, 1999, communication with the spacecraft was lost as the spacecraft went into orbital insertion, due to ground-based computer software which produced output in non-SI units of pound-force seconds (lbf·s) instead of the SI units of newton-seconds (N·s) specified in the contract between NASA and Lockheed. The spacecraft encountered Mars on a trajectory that brought it too close to the planet, and it was either destroyed in the atmosphere or re-entered heliocentric space after leaving Mars’ atmosphere.[2][3]
Mars Polar Lander
The Mars Polar Lander, also known as the Mars Surveyor ’98 Lander, was a 290-kilogram robotic spacecraft lander launched by NASA on January 3, 1999 to study the soil and climate of Planum Australe, a region near the south pole on Mars. It formed part of the Mars Surveyor ’98 mission. On December 3, 1999, however, after the descent phase was expected to be complete, the lander failed to reestablish communication with Earth. A post-mortem analysis determined the most likely cause of the mishap was premature termination of the engine firing prior to the lander touching the surface, causing it to strike the planet at a high velocity.[1]
Deep Space 2
Deep Space 2 was a NASA probe part of the New Millennium Program. It included two highly advanced miniature space probes that were sent to Mars aboard the Mars Polar Lander in January 1999.[1] The probes were named “Scott” and “Amundsen”, in honor of Robert Falcon Scott and Roald Amundsen, the first explorers to reach the Earth’s South Pole. Intended to be the first spacecraft to penetrate below the surface of another planet, after entering the Mars atmosphere DS2 was to detach from the Mars Polar Lander mother ship and plummet to the surface using only an aeroshell impactor, with no parachute. The mission was declared a failure on March 13, 2000, after all attempts to reestablish communications following the descent went unanswered.[2]
2001 Mars Odyssey
2001 Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet’s geology and radiation environment.[2] It is hoped that the data Odyssey obtains will help answer the question of whether life existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Mars Science Laboratory, and previously the Mars Exploration Rovers and Phoenix lander, to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of 2001: A Space Odyssey.[3]
Mars Express
Mars Express is a space exploration mission being conducted by the European Space Agency (ESA). The Mars Express mission is exploring the planet Mars, and is the first planetary mission attempted by the agency. “Express” originally referred to the speed and efficiency with which the spacecraft was designed and built.[1] However “Express” also describes the spacecraft’s relatively short interplanetary voyage, a result of being launched when the orbits of Earth and Mars brought them closer than they had been in about 60,000 years.
Beagle 2
The Beagle 2 was a British Mars lander that was transported by the European Space Agency’s 2003 Mars Express mission. It was an astrobiology mission that would have looked for past life on the shallow surface of Mars.
The spacecraft was successfully deployed from the Mars Express on 19 December 2003 and was scheduled to land on the surface of Mars on 25 December; however, no contact was received at the expected time of landing on Mars. ESA declared the mission lost in February 2004, after numerous attempts to contact the spacecraft were made.[4]
Spirit (rover)
Spirit, also known as MER-A (Mars Exploration Rover – A) or MER-2, is a robotic rover on Mars, active from 2004 to 2010.[2] It was one of two rovers of NASA’s Mars Exploration Rover Mission. It landed successfully within the impact crater Gusev on Mars at 04:35 Ground UTC on January 4, 2004, three weeks before its twin, Opportunity (MER-B), which landed on the other side of the planet. Its name was chosen through a NASA-sponsored student essay competition. The rover became stuck in a “sand trap” in late 2009 at an angle that hampered recharging of its batteries; its last communication with Earth was sent on March 22, 2010.
Opportunity (rover)
Opportunity, also known as MER-B (Mars Exploration Rover – B) or MER-1, and nicknamed “Oppy”,[8] is a robotic rover that was active on Mars from 2004 until the middle of 2018.[2] Launched on July 7, 2003, as part of NASA’s Mars Exploration Rover program, it landed in Meridiani Planum on January 25, 2004, three weeks after its twin Spirit (MER-A) touched down on the other side of the planet.[9] With a planned 90-sol duration of activity (slightly more than 90 Earth days), Spirit functioned until it got stuck in 2009 and ceased communications in 2010, while Opportunity was able to stay operational for 5111 sols after landing, maintaining its power and key systems through continual recharging of its batteries using solar power, and hibernating during events such as dust storms to save power. This careful operation allowed Opportunity to exceed its operating plan by 14 years, 46 days (in Earth time), 55 times its designed lifespan. By June 10, 2018, when it last contacted NASA,[10][11] the rover had traveled a distance of 45.16 kilometers (28.06 miles).[7]
Rosetta (spacecraft)
Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P).[8][9] During its journey to the comet, the spacecraft performed flybys of Earth, Mars, and the asteroids 21 Lutetia and 2867 Šteins.[10][11][12] It was launched as the third cornerstone mission of the ESA’s Horizon 2000 programme, after SOHO / Cluster and XMM-Newton.
On 6 August 2014, the spacecraft reached the comet and performed a series of manoeuvres to eventually orbit the comet at distances of 30 to 10 kilometres (19 to 6 mi).[13] On 12 November, its lander module Philae performed the first successful landing on a comet,[14] though its battery power ran out two days later.[15] Communications with Philae were briefly restored in June and July 2015, but due to diminishing solar power, Rosetta’s communications module with the lander was turned off on 27 July 2016.[16] On 30 September 2016, the Rosetta spacecraft ended its mission by hard-landing on the comet in its Ma’at region.[17][18]
Mars Reconnaissance Orbiter
Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005 and reached Mars on March 10, 2006. In November 2006, after five months of aerobraking, it entered its final science orbit and began its primary science phase.[2]. The cost to develop and operate MRO through the end of its prime mission in 2010 was US$716.6 million.[3]